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Abstract

LSPRAY is a Lagrangian spray solver developed for application with

parallel computing and unstructured gas flow solvers. It is designed to be

massively parallel and could easily be coupled with any existing gas-phase

flow and/or Monte Carlo Probability Density Function (PDF) solvers. The
solver accommodates the use of an unstructured mesh with mixed elements

of either triangular, quadrilateral, and/or tetrahedral type for the gas flow

grid representation. It is specifically used for fuel sprays within gas turbine

combustors, but it has many other uses. The manual provides the user with

the coding required to couple the spray code to any given flow code and a

basic understanding of the LSPRAY code structure and the models involved

in the spray formulation. The source code of LSPRAY will be available with

the National Combustion Code (NCC) as a complete package.
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I. List of symbols

a__

Bk

D

d

dt

dtai

dtit

dtml

h

lk

Mi
mk

nk

P

P.

r

SC

Sk

_rnlc

S,,,t_

Sm_m

Smls

T

t

Uk
Z_

yk

wk
W

wj
X

Y

outward area normal vector of the nth face

Spalding transfer number, defined in Eq. 19

specific heat, J/(Kg K)

turbulent diffusion coefficient, m2/s

droplet diameter, m

time increment, s

global time step (liquid phase), s

injection time step (liquid phase), s

allowable time step (liquid phase), s

specific enthalpy, J/Kg

latent heat of evaporation, J/Kg

molecular weight of ith species, kg/(kg-mole)

droplet vaporization rate, Kg/s

droplet number in kth group

pressure, N/m 2

pressure at normal conditions, N/m 2

Prandtl number

Gas constant, J/(Kg K)

radial coordinate (gas-phase equations) or

droplet radius (liquid-phase equations), m

Schmidt number

droplet radius squared, r_, m 2

liquid inter-phase source term of gas-phase equations

associated with dtmt

liquid inter-phase source term of the gas-phase continuity equation

liquid inter-phase source term of the gas-phase energy equation

liquid inter-phase source term of the gas-phase momentum equations

liquid inter-phase source term of the gas-phase species equations

temperature, K

time, s

velocity component of kth droplet group, m/s

velocity component, m/s

volume of the computational cell, m 3

velocity component of kth droplet group, m/s

velocity component, m/s

velocity component of kth droplet group, m/s

velocity component, m/s

gas phase chemical reaction rate, 1/s

Cartesian coordinate

gaseous species mass fraction
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y Cartesian/radial coordinate

z Cartesian coordinate

greek symbols

AV computational cell volume, m 3

Dirac-delta function

ej species mass fraction at the droplet surface

A thermal conductivity, J/(m s K)

# dynamic viscosity, kg/(m s)

p density, kg/(m 3)

_- viscous stress term in Eq. 3, kg/(m s2)

X mole fraction

cr_ surface tension, kg/s 2
O void fraction

superscripts

- time averaging

// fluctuations

subscripts

b represents conditions at boiling temperature

c cell-face center

f represents conditions associated with fuel

g global or gas-phase

k droplet group or liquid phase

l liquid phase or laminar

m conditions associated with dtmt

n nth-face of the computational cell

o initial conditions or oxidizer

p grid cell or particle location

s represents conditions at the droplet

surface or adjacent computational cell

i coordinate or specie indices

j specie indices

, partial differentiation with respect

to the variable followed by it
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II. Introduction

There are many occurrences of sprays in a variety of industrial and power

applications and materials processing. A liquid spray is a two phase flow with

the gas as the continuous phase and the liquid as the dispersed phase in the

form of droplets or ligaments. 1 The interaction between the two phases, which

are coupled through exchanges of mass, momentum, and energy, can occur in

different ways at disparate time and length scales involving various thermal,

mass, and fluid dynamic factors.

A number of finite-difference formulations have been advanced over the

years for predicting the flow (mass and momentum) and thermal properties

of a rapidly vaporizing spray. Some of the pros and cons of various for-

mulations can be found in Refs. 1 to 3. Depending on the nature of the

spray, an appropriate selection could be made from the choice of multicon-

tinua, discrete-particle, and probabilistic spray formulations, Lagrangian or

Eulerian representation for the liquid-phase equations, and different vapor-

ization models. In this manual, we only summarize the salient aspects of the

spray formulation adopted from our previous work 4-9 without attempting to

provide an in-depth review on the subject of the thermal theory and fluid

dynamic behavior of reacting sprays.

LSPRAY employs the multicontinua approach, which allows for reso-

lution on a scale greater than the average spacing between two neighbor-

ing droplets. 1 An Eulerian scheme is assumed for the gas phase equations

and a Lagrangian scheme is used for the liquid phase equations as it elim-
inates errors associated with numerical diffusion. The vaporization model

of a polydisperse spray takes into account the transient effects associated

with the droplet internal heating and the forced convection effects associated

with droplet internal circulation and the phenomena associated with bound-

ary layers and wakes formed in the intermediate droplet Reynolds number

range. _ The present formulation is based on a deterministic particle tracking

method and on a dilute spray approximation which is applicable for flows

where the droplet loading is low. Not considered in the present release of the

code are the effects associated with the droplet breakup, the droplet/shock

interaction, the multi-component nature of liquid spray and the phenom-

ena associated with dense spray effects and super-critical conditions. The

numerical method used could be used in both unsteady and steady state

calculations. 6-9

The success of any numerical methodology used in the study of practical

combustion flows depends not only on the modeling and numerical accuracy

considerations, but its applicability would be dictated mainly by the avail-

able computer memory and turnaround times afforded by the present-day

computers.
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Our previouswork on the extensionof the Monte Carlo PDF approach
to spray flamesshowedthat the computer turnaround times and memory
restrictions could be reducedconsiderablyby exploiting the recentadvances
in parallel computer architectures,s It is well known that considerableeffort
usually goesinto generatingtraditional structured grid meshesfor gridding
up practical combustor geometrieswhich tend to be very complex in shape
and configuration. The grid generationtime could be reducedconsiderably
by making useof existing automatedunstructured grid generators.1°

With the aim of advancingthe current multi-dimensionalcomputational
tools usedin the designof advancedtechnologycombustors,wehaverecently
extendedour previous work on sprays to unstructured grids following the
guidelinesestablishedfor the developmentof the National CombustionCode
(NCC).9NCC is beingdevelopedin theform of a collaborativeeffort between
NASA LeRC, aircraft engine manufacturers, and several other government

agencies and contractors. 11 Some of the salient features of our work in Ref.

9 are summarized below:

(1) An efficient particle search algorithm was developed and imple-

mented into the Lagrangian spray solver in order to facilitate particle move-

ment in an unstructured grid of mixed elements.

(2) The spray solver was designed to be massively parallel in order to

exploit the recent advances in parallel architectures. The spray code was

rewritten in Fortran 77 with PVM calls for parallel computing.

(3) LSPRAY is currently coupled with Pratt and Whitney's CORSAIR 12

- an unstructured flow solver, and an Eulerian-based Monte Carlo probability

density function solver - EUPDF, 13 which were selected to be integral compo-

nents of the NCC cluster of modules. EUPDF was developed for application

with sprays, combustion, unstructured grids and parallel computing.

(4) The spray solver receives the mean velocity and turbulence fields

from the flow solver. The species solution supplied could be provided by

either a conventional CFD solver or a Monte Carlo PDF solver depending on
the choice of the solver.

(5) The spray solver computes the interphase source terms which are

used by the gas phase solvers. This output could be used in both conservative

as well as non-conservative finite-difference formulations of the gas phase

equations.

The furnished code demonstrates the the successful methods used for

coupling and parallelization of the spray to the flow code. These methods

can be adopted for coupling other spray codes to Navier-Stokes solvers. Not

all of the spray coding is furnished in this manual. The code that is generic

to spray codes has been omitted. Only code that is unique to coupling is

given. However, the first release of the generic code will be available along

with NCC as a complete package.
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The spray model provided several favorable results when applied to

stratified-charge rotary combustion (Wankel) engines and several other con-

fined as well as unconfined spray flames. 6-9

III. Governing Equations for the Gas Phase

Here, we summarize the conservation equations for the gas phase in

Eulerian coordinates derived for the multicontinua approach) This is done

for the purpose of identifying the interphase source terms arising from the

exchanges of mass, momentum, and energy with the liquid phase.

The conservation of the mass leads to:

[_v_],,+ [_v_,],., = s.,o = _ _ ._k
k

For the conservation of the species, we have:

(1)

where

Zy_wj= S_z, = Z eJnk mk (2)
k

wj = O and _ ej = 1
J J

For the momentum conservation, we have:

[ZEus],,+ [ZE_-j],_, + [pE],_,- [oE_j],_, - [(1- o)E_t_],_,= s._m =

4_r

k k

where 0 = the void fraction of the gas which is ratio of the equivalent volume

of gas to a given volume of a gas and liquid mixture. For dilute sprays, the

void fraction is assumed to be equal to one. The shear stress r/j in Eq. 3 is

given by:

2

rij = _[u_,_ i + uj,_,] - -_,5_ju_,_,

For the energy conservation, we have:

[fiV_h],, + [,_V_u,h],.,, - [OVcAT,.,,],., - [(1 - O)V¢AtT,.,],_,

-[ov pl,,=s..,o= E (4)
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IV. Governing Equations for the Liquid Phase

The equations of motion for each class of droplets are:

dxk

d---t--= Uk (5)

dy_
d---/-= Vk (6)

dzk

d---_= W_ (7)

The above equations are for droplet position. For droplet velocity, we have:

where

dUk
dt

dVk
dt

_ 3 CD#gsRek [Ug - Uk]
16 pkr_

3 cv_n_ [v_- vk]
16 pkr_

dWk 3 CD#gsRek

4--'7-= 16 pkr_ [Wg - Wk] (10)

(s)

(9)

(11)
#gs

cv = n_---_1+ (12)

For droplet size, the droplet regression rate is determined from three

different correlations depending upon the droplet-Reynolds-number range.

When Rek > 20, the regression rate is determined based on a gas-phase

boundary-layer analysis _4 valid for Reynolds numbers in the intermediate

range. The other two correlations valid when Rek _< 20 are taken from Clift
et al. _5

dS____k= _2___z Rek f(B_) if Re_ > 20
dt Pk

dSk
- [1+ (i + +

dt pk

if 1 < Rek < 20 (13)

dSk
- #' [l+(l+nek) 1/3]In(l+Bk) if nek <1

dt Pk

where Bk is the Spalding transfer number defined in Eq. 19. The function

f(Bk) is obtained from the solution of Emmon's problem. The range of
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validity of this function wasextendedin Raju and Sirignano*to considerthe
effectsof droplet condensation.

The internal droplet temperature is determined based on a vortex
model.14The governingequationfor the internal droplet temperatureis given
by:

where

0t - --cp_p,r_L _ + (1+ c(0_) -_j] (14)

rk-_- (15)

where a represents the coordinate normal to the streamsurface of a Hill's

Vortex in the circulating fluid and C(t) represents a nondimensional form of

the droplet regression rate. The initial and boundary conditions for Eq. 14

are given by

t = ti_j_a_o_, Tk = Tk,o (16)

OTk 1 [_]r2OTka = O, c3a - 17 k_-_ (17)

OTk [C,(Tg- Tks) ] _ka = 1, Oa 3pk- _ L -B-; -l_ -
where a - 0 refers to the vortex center and a --

surface.

The Spalding transfer number is given by

(18)

1 refers to the droplet

Bk = Cp(T9 - T_s) _ (Yl_ - Yl) (19)
lk,,jj (1 - Yl,)

lk,¢lj=l a + 4_r_tr_ (On_

Mo
y;:= 1+ - 1)

(20)

(21)

where Ik,efJ is the effective latent heat of vaporization as modified by the

heat loss to the droplet interior, and M_ is the molecular weight of the gas

excluding fuel vapor.

Based on the assumption that phase equilibrium exists at the droplet

surface, the Clausius-Clapeyron relationship yields

(22)
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In Eq. 11 the molecular viscosity is evaluated at a reference temperature

using Sutherland's equation

#(T_y) = 1.4637 10 -6 T3//
T,._j + 120

(23)

where

2T (24)

The droplets may evaporate, move along the wall surfaces, and/or re-

flect with reduced momentum upon droplet impingement with the combustor

walls. In our present computations, subsequent to the droplet impingement

with the walls, the droplets axe assumed to flow along the wall surfaces with

a velocity equal to that of the surrounding gas.

V. Details of Fuel Injection

The success of any spray model depends a great deal on the specification

of the appropriate injector exit conditions. However, a discussion involving

the physics of liquid atomization is beyond the scope of the this manual. In

the present release of the code, the liquid fuel injection is simulated by intro-

ducing a discretized parcel of liquid mass in the form of spherical droplets at

the beginning of every fuel-injection time step.

For certain cases, the fuel-injection time step, dtil, needs to be deter-

mined based on the resolution permitted by the length and time scales as-

sociated with several governing parameters such as average grid spacing and

average droplet spacing and velocity. However, for the case of a steady state

solution, our experience showed that a time step based on the average droplet

lifetime yields better convergence, 4-7 whose value typically ranges between

1 to 2 milli-seconds for the case of reacting flows.

The program facilitates fuel injection through the use of a single fuel

injector comprising of different holes. 6-r However, multiple fuel injection in

a steady state calculation could be simulated by simply assigning different

initial conditions for the spatial locations of the droplet groups associated

with each one of the different holes. For a polydisperse spray, the program

expects inputs for the number of droplet groups in a given stream and for the

initial droplet locations and velocities. However, the number of droplets in a

given group and their sizes could be either input directly or computed from a

properly chosen function for the droplet size distribution. The specified initial

inputs should be representative of the integrated averages of the experimental

conditions, s-9

One correlation typical of those used for the droplet size distribution is

taken from Ref. 16:
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d ]3"5 / d _o.4= 4.21 dd (25)

where n is the total number of droplets and dn is the number of droplets in

the size range between d and d -_ dd. The Sauter mean diarneter, d32, could

be either specified or estimated from the following correl&tionlT:

27rat., (26)
d32 -- Hdpg-'--_ A m

where Bd is a constant, VT is the average relative velocity between the liquid

interface and the ambient gas, and _, is a function of the Taylor number,
2 2 2

LSPRAY contains a subroutine, dropdis, for the integration of a droplet

size distribution function which could easily be modified for other correla-

tions of similar kind. The droplet size distribution obtained from the above

correlation in terms of the cumulative percentage of droplet number and mass

as a function of the droplet diameter is shown in Fig. 1.
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Figure 1. Droplet-size distribution.

VI. Details of the Numerical Method

In order to evaluate the initial conditions for the integration of the liquid

phase equations, we need to know the gas phase properties at each particle

location. But in order to evaluate the gas phase properties it is first neces-

sary to identify the computational cell where a particle is located. It is a
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trivial task to search for the computational cell of the particle location in

rectangular coordinates. However, a search for the particle location becomes

a complicated problem when the computational cell is no longer rectangular

in the physical domain. An efficient particle search algorithm is developed

and implemented into the Lagrangian spray solver in order to facilitate par-

ticle movement in an unstructured grid of mixed elements. The search is

initiated in the form of a local search from the computational cell of the pre-

vious time-step as the starting point. The location of the computational cell

is determined by evaluating the dot product of x_pc. _ = ]x_c[ [a_[ cos(C),

where x__c is the vector defined by the particle location to the center of the

n-face of the computational cell and a_ is the outward area normal of the

n-face as shown in Fig. 2, and ¢ is the angle between the two vectors.

Figure 2. A vector illustration used in the particle search analysis.

A simple test for the particle location requires that the dot product be neg-

ative over each and every one of the n-faces of the computational cell. If

the test fails, the particle search is carried on over to the adjacent cells of

those faces over which the dot product turns out to be positive. Some of

those n-faces might represent the boundaries of the computational domain

while the others are the interfaces between two adjoining interior cells. The

search is first carried on over to the adjacent interior cells in the direction

pointed out by the positive sign of the dot products. The boundary condi-

tions are implemented only after making sure that all the possibilities lead to

a search outside of the computational boundaries. This implementation en-

sures against any inadvertent application of the boundary conditions before

locating the correct interior cell.
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I MAIN I
I

I CALL DCLR I

I INITIALIZE INTERPHASE SOURCE TERMS TO ZERO I

tml < tgl

1

I UPDATE tg, = tg,+ dtgll

tml < tg I s tml + dtml

CHECK TIME STEP FOR GLOBA_INTEGRATION

tml < til tml < til <

[__CHECK TIME STEP FOR_ ,
FUEL INJECTION J

v I
i I

tml+ dtml

I INTRODUCE A NEW GROUP OF PARTICLES I
I

IUPDATE til =til+ dtill

I

DO A PARTICLE SEARCH & ASSIGN
PARTICLES BASED ON THE PARALLEL

STRATEGY IMPLEMENTED

"_ SUBROUTINE INTPLA1

I

I INTERPOLATE GAS PHASE PROPERTIESAT THE PARTICLE LOCATION

INTEGRATE SPRAY EQUATIONS & DELETE
PARTICLES NO LONGER NEEDED IN THE

COMPUTATION

I

SUBROUTINE INTPLA

m_,_,SUBROUTINE CHASLV

EVALUATE SOURCE TERMS FOR GAS
PHASE EQUATIONS

I

I UPDATE tml = tml + dtmll

il _ SUBROUTINE SPRIPS

Fig. 3 The flow structure of the LSPRAY code.

14



After the gas phase properties at the particle location are known, the

ordinary differential equations of particle position, size, and velocity are ad-

vanced by a second-order accurate Runge-Kutta method. The partial differ-

ential equations governing the droplet internal temperature distribution are

integrated by an Euler method. After the liquid phase equations are solved,

the interface source terms of the gas phase equations are evaluated.

VII. Program LSPRAY Flow Structure & Time-Averaging of the

Interphase Source Terms of the Gas Phase Equations

The spray solver makes use of three different time steps - dr,, is the

allowable time step, dtgl is the global time step, and dtit is the fuel injection

time step. dtmt needs to be evaluated based on the smallest of the different

time scales, which are associated with various rate controlling phenomena of

a rapidly vaporizing droplet, such as those imposed by an average droplet

lifetime, the local grid spacing and a relaxation time scale associated with

droplet velocity among others. This restriction usually leads to a small time-

step which typically has values in the neighborhood of 0.01 milli-seconds

(ms). However, our experience has shown that the convergence for the steady

state computations could be improved greatly by supplying the flow and

EUPDF solvers with the interphase terms obtained from a time-averaging

procedure, where the averaging is performed over an average lifetime of the

droplets, dtgz. The variable, dtgt, has values in the neighborhood of 1 ms.

The averaging scheme could be explained better through the use of a

flow chart shown in Fig. 3. The main spray solver is invoked by a call to

dclr which executes the following steps:
1. It first initializes the source terms to zero.

2. Checks to see if new particles need to be

introduced.

3. Advances liquid phase equations over a pre-

specified time step, dtml, with calls to the follow-

ing routines:

intplal - Does a particle search and assigns particles based

on the parallel strategy implemented.

intpla- Interpolates gas phase properties at the particle

location.

chaslv - Advances liquid phase equations and, also, deletes

any particles that are no longer needed in the

computations.

sprips - Evaluates the liquid phase source term contribu-

tions, Sml, for use in the gas phase equations.

15



°

°

Continues with steps (2) and (3) until the compu-

tations are completed over a global time step of

dtgl.

Returns control over to other solvers, e.g. flow or

EUPDF, and supply them with source terms, Sgl,

averaged over dtgl.

The time-averaged contribution of these source terms, Sg_, is given by:

M
SgZ= )_.: S.t (27)

m=l dtgz

where

M

dtml = dtg_ (28)
rn_- I

VIII. Parallelization

There are several issues associated with the parallelization of the spray

computations. The goal of the parallel implementation is to extract maxi-

mum parallelism so as to minimize the execution time for a given application

on a specified number of processors, is Several types of overhead costs are as-

sociated with parallel implementation which include data dependency, com-

munication, load imbalance, arithmetic, and memory overheads. The term

arithmetic overhead is the extra arithmetic operations required by the par-

allel implementation. Memory overhead refers to the extra memory needed.

Excessive memory overhead reduces the size of a problem that can be run on

a given system and the other overheads result in performance degradation, is

Any given application usually consists of several different phases that must

be performed in certain sequential order. The degree of parallelism and data

dependencies associated with each of the subtasks can vary widely, is The goal

is to achieve maximum efficiency with a reasonable programming effort, is

In our earlier work, we discussed the parallel implementation of a spray

algorithm developed for the structured grid calculations on a Cray T3D. s

These computations were performed in conjunction with the extension of a

Monte Carlo PDF method to spray flames. The parallel algorithm made use

of the shared memory constructs exclusive to Cray MPP (Massively Parallel

Processing) Fortran and the computations showed a reasonable degree of

parallel performance when they were performed on a NASA LeRC Cray

T3D with the number of processors ranging between 8 to 32. 8 Later on,

]5



Fig. 4a An illustration of the parallelization

strategy employed in the gas flow comp-

utations.

Fig. 4b An illustration of the parallelization

strategy employed in the spray computa-

tions.
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the extension of this method to unstructured grids and parallel computing

in Fortran 77 with PVM calls was reported in Ref. 9. The Fortran 77

version offers greater computer platform independence. In this section, we

only highlight some important aspects of parallelization.

In an approach, where an Eulerian scheme is employed for the gas phase

computations and a Lagrangian scheme for the liquid phase computations,

the gas phase computations are performed by simply dividing the domain of

computation into n-parts of equal size and each part is solved by a different

processor. Fig. 4a illustrates a simple example of the domain decomposition

strategy adopted for the gas-phase computations where the total domain is

simply divided equally amongst the available computer processing elements

(PEs). In this case, we assumed the number of available PEs to be equal

to four. But the Lagrangian representation makes the spray computations

difficult to parallelize as spray distribution tends to be spatially very non-

uniform and, also, dynamic in nature for the reasons summarized below:

(1) Most of the spray is usually confined to a small region near the
atomizer location.

(2) The Lagrangian particles tend to move in and out of different parts

of the computational domain processed by different PEs,

(3) Some new particles might be added to the computation at the time

of fuel injection while some others might be taken out of computation either

when they exit out of the computational boundaries or when they become

too small after vaporization.

In order to evaluate the parallel performance of the spray computations,

two different domain decomposition strategies were developed. 9 However, the

present release of the code contains the one which showed better performance

when the computations were performed on the LACE cluster of workstations
at NASA LeRC. 9

Fig. 4b illustrates a simple example of the domain decomposition strat-

egy adopted for the liquid-phase computations where the corresponding gas-

flow computational domain is divided into equal parts between the four avail-

able PEs. In this strategy, the Lagrangian particles are assigned to the pro-

cessor of the computational grid where a particle is located. This strategy

may lead to non-uniform load balancing during the integration of the liquid

phase equations but is likely to result in less message passing since the inter-

processor communications are limited to a single operation associated with

the particle search.

IX. Details of the Coupling LSPRAY With the Flow & Monte

Carlo PDF Solvers

The spray module is designed so that it could easily be coupled with any

of the existing unstructured-grid flow and Monte-Carlo-PDF solvers. If geo-
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I SPAWN MULTIPLE PEs FOR PARALLEL COMPUTING I
I

II

READ PARAMETERS & GEOMETRIC DATA

I Listed in

[CALLSPRAY PDF READ PARAMETERS II'm_App endixlll.... :-;1
i-_-: C_L--_F_&_R--__ _ L_

t-
I

I __Listed in Appendix IV

q
I INITIALIZE SPRAY VARIABLES I ',READ SPRAY RESTART FILES IL /

(RERUN)
INITIALIZE RERUN

I INITIALIZE FLOW VARIABLES I I READ FLOW RESTART FILES
I I

I
Iu_o.__._._oo_.._,c• _...s_o._..o_._,_sI

_.L

[ CALL DCLR TO ADVANCE SPRAY EQUATIONS ]
L "L= J

I CALL PDF TO ADVANCE PDF EQUATIONS]
L /

I ADVANCE FLOW EQUATIONS I

YES _ NO

I CALL SPRAY_PDF_OUTPUT _Listed in Appendix VI
.J

]
IOUTPUTI
ISTOPI

Fig. 5 The overall flow structure of the combined flow, LSPRAY, ad EUPDF solvers.
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metric grid parameters - e.g. area vectors, grid connectivity, etc., were sup-

plied separately, it could even be coupled with any of the existing structured-

grid flow solvers. However, the present release of the code relies on the other

modules of NCC for obtaining that information.

The structure of the spray solver is so designed that only a minimal

amount of coding modifications need to be made within the flow and PDF

solvers for their coupling with LSPRAY. The present version of the module

relies entirely on the use of the Fortran common blocks for information ex-

change between the various modules. Even this reliance should entail only

few changes to be made within the spray code for linkage with different
solvers.

The coupling issues could be understood better through the use of a flow

chart shown in Fig. 5. The chart contains several blocks - some shown in

black and/or solid lines and others in color and/or dashed lines. The ones in

solid blocks represent the flow chart that is typical of most flow solvers. The

ones in dashed blocks represent the coupling for adding the spray and PDF

solvers. The details on the PDF blocks are not provided in this report as they

could be found elsewhere in a separate reference. 13 It should be borne in mind

that the PDF solver could be run without the spray solver and vice-versa as

they are independent.

The flow chart for a typical flow solver begins by calling several routines

some for initiating the established PVM protocol for parallel computing

and the others for spawning children of the same processes so that the com-

putations could be performed simultaneously on various PEs participating

in the parallel computing environment. It is followed by a routine to read

various initial parameters. The geometric data could be either read directly

or created by the inclusion of appropriate calling routines needed for grid

generation. Then, the initial conditions for the flow variables need to be

either specified or read from the restart files if it is a rerun. The thermody-

namic and transport properties are then updated before advancing the flow

equations over a series of time steps until the desired number of iterations

are reached. Finally, the program is terminated after writing the output data

on a separate restart and standard files.

The coupling starts with the addition of a calling routine

spray_pdf_read_parameters - to read the spray and pdf control parame-

ters followed by calls to the restart or initialization routines: pdf_int_rerun

followed by spray_int_rerun. Then, calls to dclr and pdf were made in

order to advance the spray and pdf equations in a sequential order before ad-

vancing the flow equations. It should be borne in mind that if the pdf solver

is invoked, the thermodynamic and transport properties would be evaluated

by the routines contained within the pdf solver instead of the ones contained

in the flow solver. Also, Eqs. 1 to 4 - the gas phase governing equations
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- need to be modified with the addition of the interphase source terms de-

fined in Section III. Finally, a routine, spray_pdf_output, is included for

outputting the pdf and spray data on appropriate restart and standard files.

Appendix I contains a table of all the Fortran subroutines and functions

used in LSPRAY as well as the interface subroutines needed for coupling

LSPRAY with a flow solver. All these routines will be released along with

NCC but, however, a complete listing of all the interface subroutines is also

provided in the user's manual. A brief description of all the LSPRAY routines

is contained in Appendix II of the user's manual. The description pages of the

LSPRAY routines along with the code listing pages of the interface routines

are also given in this table.

Appendix III contains the listing of a subroutine which is used for read-

ing some of the control and other associated parameters involving LSPRAY
and EUPDF solvers. The LSPRAY initialization and restart routine is listed

in Appendix IV. This routine provides a detailed account of all the input files

associated with LSPRAY and gives a detailed description of how to initialize

the code for the case of a swirl-stabilized confined spray flame. A sample

input file is listed in Appendix V. This input applies for n-heptane fuel.

Appendix VI contains the listing of a subroutine used for writing output

data from LSPRAY and EUPDF codes on separate standard and restart files.

Appendix VII contains a list of the geometric variables used by LSPRAY

which are currently supplied by the flow code of NCC.

Appendix VIII contains an example of the partial listings of code initi-

ation for coupling LSPRAY and EUPDF with a gas flow solver.

The last appendix provides an example of the summary of the CPU

times taken by CORSAIR and LSPRAY for the case of a confined swirl-

stabilized spray flame when the computations were performed on a LACE

cluster at NASA LeRC.
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Appendix I

Table 1. A List of LSPRAY Fortran subroutines and functions.

Number

°

2.

3.

.

5.

6.

7.

°

9.

10.

11.

12.

13.

14.

Name of the routine

blasiu()
chaslv

dclr

dropdis()

find_cntr()

find_xyzface()

intpla

intplal

prnspr

spray_int_rerun

spray_pdf _output

spray_pdf _read_parameter s

sprips

Code released with

NCC/Description page

25

25

25

26

26

26

26

27

27

27

27

27

27

27

Code page/

User's manual

31

49

28

25





Appendix II

Description of LSPRAY Fortran subroutines and functions

1. function blasiu(x):

PURPOSE: This function returns a solution based on the Blasius function

used in computing the mass, momentum, and heat transfer at the

droplet surface.

2. subroutine chaslv:

PURPOSE: This routine has the following functions:

(I) Integrates the liquid phase equations.

(2) Takes particles out of computation

after becoming small enough due to

vaporization.

3. subroutine dclr:

PURPOSE: This routine is to be called once at the beginning every

global time-step, dtgl. It is primarily a controlling

routine for spray computations.

This routine has the following functions:

(I) It initializes the source terms to zero.

(2) Checks to see if new particles need to be introduced.

(3) Advances liquid phase equations over an allowable or

pre-specified time step, dtml, with calls to the

following routines:

intplal - Interpolates gas phase properties at the

particle locations.

chaslv - Advances liquid phase equations.

intpla - Identifies computational cells and PEs associated
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sprips

with particles.

- Evaluates the liquid phase contributions for

use in the CFD and PDF equations.

(4) Continues with steps (2) and (3) until the computations

are completed over a global time step of dtgl.

(5) Returns control over to other solvers, e.g. CFD and PDF,

and also supply them with source terms averaged over dtgl.

4. subroutine dropdis(rhol,flowdum,sr,fld,smd,nofg):

PURPOSE: This routine computes droplet distribution from the

following correlation:

dn/n = a*((D/D32)**alp)*exp(-b*((D/D32)**bet))*dD/D32

where a, b, alp, and bet are constants.

5. subroutine find_cntr(i,xx,y_zz):

PURPOSE: This routine computes the x, y, and z locations of

the center of the cell, i. It is used in the

particle search algorithm.

6. subroutine find_xyzface(i):

PURPOSE: This routine computes x, y, and z locations of all

the face centers of the element, i. It is used in

the particle search algorithm.

T. subroutine intpla:

PURPOSE: This routine performs the following functions:

(I) Particle search - It really amounts to identifying

the computational cell where a particle is located.

In parallel computing, it also means identifying

the corresponding PE associated with the partitioning

of the computational domain where a particle is

located.

(2) Implements appropriate boundary conditions if

necessary.

(3) Reassigns the particles based on the parallel

implementation stratergy employed.
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8. subroutine intplal:

PURPOSE: This routine interpolates the gas-phase properties at

the particle location. In the present case, a simple

zeroth order interpolation is employed.

9. subroutine prnspr:

PURPOSE: Write standard output from LSPRAY to Fortran unit I.

I0. subroutine sprayJnt_rerun:

PURPOSE: This routine has the following functions:

(i) Provides initial inputs to the spray computations.

(2) Restarts from previous data if it is a rerun.

II. subroutine spray_pd_output:

PURPOSE: This routine writes output data from EUPDF & LSPRAY

computations to restart and standard-output

files.

12. subroutine spray_pdf_read_parameters:

PURPOSE: This routine reads controlling parameters associated

with the EUPDF and LSPRAY solvers. Based on the controlling

parameters read, it might invoke an initialization routine

of the EUPDF solver which is needed in the thermodynamic &

transport properties evaluation.

13. subroutine sprips:

PURPOSE: This routine computes the source terms arising from liquid

phase contribution, of use in both CFD and Monte Carlo PDF

solvers.

smlc(i) = liquid-phase contribution of Eqs. 1 and 2 of

Section III.

smlmx(i), smlmy(i), smlmz(i) = liquid-phase contribution

of Eq. 3 of Section III.

smle(i) = liquid-phase contribution of Eq. 4 of Section III.

14. subroutine sy(il,iu,bb,dd,aa,cc):

PURPOSE: Tri-diagonal matrix solver. It is used in the solution

for the droplet internal temperature distribution.
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Appendix III

A Subroutine Listing for the Read Parameters of LSPRAY and

EUPDF

c

C

C

c

C

subroutine spray_pdf_read_parameters

include 'dcfslog.i'

include 'dcfslog rw.i'

c PURPOSE: This routine reads controlling parameters associated

c with the EUPDF and LSPRAY solvers. Based on the controlling

c parameters read, it might invoke an initialization routine

c of the EUPDF solver which is needed in the thermodynamic &

c transport properties evaluation.

c

c FORM OF CALL: call spray_pdf_read_parameters

C

C

c ADDITIONAL I/O:

c

c INPUT: spray_pdf_parameter_input

c

c OUTPUT: None

C

c

C m_--

c ispray controls turning on or off spray computations.

c lspray = .TRUE. - turns on spray computations.

c = .FLASE. - otherwise.

c

c ldread controls reading or not from restart files for

c spray computations.

c ldread = .TRUE. - restarts from previous runs.

c = .FLASE. - starts from initial conditions.

C

c ispray_mod= This variable controls calls to the spray

c solver. The spray solver is called once at

c every ispray_mod times of CFD iterations.
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c

c ipread = Assigned unit number for the file: liquid_input.

c idread = Assigned unit number for the file: liquid_results.

c idread2= Assigned unit number for the file: liquid_results_ini.

c idwrit = Assigned unit number for the file: liquid_results_new.

c idwrit2= Assigned unit number for the file: liquid_results_ini.

c

c ipdf controls turning on or off Monte Carlo PDF computations.

c ipdf = 0 turns off Monte Carlo PDF computations.

c = I otherwise.

c

c ns serves two functions depending on whether ns has a

c zero or non-zero value.

c ns = 0 starts the Monte Carlo PDF computations from

c initial conditions.

c ns = a non-zero number restarts the computations from

c a previous run. a non-zero number represents the

last iteration number of a previous run which is

used in the time-averaging scheme utilized in

the PDF computations.

c

c

c

c

c ipdf_mod

c

c

c

= This variable controls calls to the PDF

solver. The PDF solver is called once at

every ipdf_mod times of CFD iterations.

c ipdf_num = In a given cycle, the pdf solver is advanced over

c a number of time steps given by ipdf_num.

c

c ireal = Assigned unit number for the file: pdf_results.

c irea2 = Assigned unit number for the file: pdf_results_ave.

c iwril = Assigned unit number for the file: pdf_results.

c iwri2 = Assigned unit number for the file: pdf_results_ave.

c

c

c

open(unit=85,file='spray_pdf_parameter_input')

read(85,*)

read(85,*)Ispray,ldread,ispray_mod

read(85,*)

read(85,*)ipread,idread,idwrit,idread2,idwrit2

read(85,*)

read(85,*)ipdf,ns,ipdf_mod,ipdf_num

32



c

c

read(85,*)

read(85,*)ireal,irea2,iwril,iwri2

close(unit=85)

c

c Routine rctinp of the PDF solver provides initialization

c parameters used in the themodynamic and transport property

c evaluation as well as in the chemical kinetics scheme.

c

if(ipdf.eq.l) then

call rctinp

endif

c

RETURN

END

c
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Appendix IV

A Subroutine Listing for LSPRAY Code Initialization and Restart

subroutine spray_int_rerun

include 'd3dpar.i'

include 'cfsparms.i'

include 'cfsnodes.i'

include 'cfsxyz.i'

include 'cfsarea.i'

include 'cfsface.i'

include 'cfsbc.i'

include 'cfschar.i'

include 'cfssym.i'

include 'cfsad].i'

include 'cfstranslate.i'

include 'cfsedge.i'

include 'cfsperiodic.i'

include 'parallel.i'

include 'cfsmimd.i'

include 'd3dcom.i'

include 'd3dinj.i'

include 'd3dprl.i'

include 'dcfslog_rw.i'

dimension fld(20),fldp(20),sr(20),srp(20)

logical iminj,lmdis,Ipinj,ipdis

common/itemplvt/itemplv

C _m

C

C

C

c PURPOSE: This routine has the following functions:

C
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c

c

C

C

C

C

C

C

C

C

C

C

C

C

(I) Provides initial inputs to the spray computations.

(2) Restarts from previous data if it is a rerun.

REFERENCES:

(1) M.S. Raju, ''Heat Transfer and Performance Characteristics

of a Dual-Ignition Wankel Engine,'' Journal of Engines,

the 1992 SAE Transactions, Section 3, pp. 466-509.

(2) M.S. Raju, ''Combined Scalar-Monte-Carlo-PDF/CFD Computations

of Spray Flames on Unstructured Grids With Parallel Computing,''

AIAA paper 97-2969, the 33rd AIAA/ASME/SAE/ASEE joint propulsion

conference, Seattle, WA, July 06-10, 1997.

c FORM OF CALL: call spray_int_rerun

c

c ADDITIONAL I/O:

C

C

C

C

C

C

C

C

INPUT: liquid_input, liquid_results_ini, liquid_results.

OUTPUT: None

C

C

c

itemplv=O

INTS_DATA_I = 351

INTS_DATA_2= 352

PACKS_DATA_I= 451

C ----

C

c Initialization for parallelization.

C

c For elements whose neighboring cells are located on other

c PEs, store appropriate information on inter-processor

c communications. This information will be used in the particle

c search algorithm.

C

ip=0
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593

594

do iwho= 1, n_neighbor_to

i= neighbor_to(iwho)

do n=l,number_per_processor(l,i)

ip=ip+l

iphi(n) =isend_element(ip)

enddo

n_elem= number_per_processor(l,i)

irc= send_data_i (iul(i),iphi, n_elem, INTS_DATA_I)

enddo

inode=nodes

do iwho= 1, n_neighbor_from

i= neighbor_from (iwho)

nitems= number_per_processor(2,i)

irc= recv_data_i (iul(i),iphi, nitems, INTS_DATA_I)

do 594 n=l,nitems

do 593 j=l,nfaces(inter_element(i,n))

if(interface(i,n).eq.j) then

bctypel(inter_element(i,n),j)=l

element=inter_element(i,n)

edge_id=face_to_edge(element,j)

inode=inode+l

edge(edge_id,1)=inode

cl(inter_element(i,n),j)=inode

ipr_fr_id(inode-nodes) =i

ile_fr_id(inode-nodes) =iphi(n)

endif

enddo

enddo

enddo

C ------

c wf = molecular weight of fuel.

c elhi = latent heat of vaporization.

c rhol = density of liquid fuel.

c cpl = specific heat of liquid fuel.

C

C ------
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c tboil = boiling temperature of fuel at normal pressure.

c conl = thermal conductivity of lqiuid fuel.

c tdrop = initial droplet temperature.

c ugc = universal gas constant.

C ----

c dtgl = Global time step. After advancing the spray

c computations over dtgl, control is returned over

c to other solvers such as PDF and CFD. However,

c the allowable time step (=dtml) for advancing

c the liquid phase equations is usually much smaller

c than dtgl in case of steady state computations,

c Convergence could be improved by providing a

c spray solution based on the average life of the

c droplets. For this reason the spray source terms

c supplied to the CFD and PDF solvers are obtained

c based on an averaging scheme by advancing the

c liquid phase equations over a number of time steps

c equaling about dtgl/dtml.

c

c dtml = allowable time step.

c The program facilitates fuel injection through the use of a

c single fuel injector. However, multiple fuel injection in a

c steady state calculation could be simulated by simply

c assigning different initial conditions for the spatial

c locations of the droplet groups associated with each one

c of the different holes.

C

c For a polydisperse spray, the program expects inputs

c on the number of droplet groups, droplet locations, and drop

c velocities. But droplet sizes and droplet number can be

c either input directly or could be computed by making use

c of a correlation for the droplet size distribution.

C

C

c
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c iminj = .true.
c = .false.
C

c lmdis = .true.

c = .false.

C

C

- if fuel from the main injector is turned on.

- otherwise.

invokes a correlation for droplet size distribution.

otherwise provide inputs on droplet sizes and

droplet numbers.

c dtil = time step for main fuel injection.

c

C flowf = fuel flow rate, kgm/s, of main fuel injection.

c is used only when imdis = .true.

C

c smdm

C

C

This input

= Sauter mean diameter. This input is used only when

Imdis = .true.

C

C-

write(6,_)' '

write(6,_)' --- begins writing from subroutine spray_int_rerun of

Ispray solver ---'

write(6,_)'

write(l,_)'

write(l,_)' --- begins writing from subroutine spray_int_rerun of

Ispray solver ---'

write(l,_)' '

open(unit=ipread,file='liquid_input ')

read(ipread,_)

read(ipread,lOO)wf,elhi,rhol,cpl

read(ipread,_)

read(ipread,lOO)tboil,conl,tdrop,ugc

read(ipread,_)

read(ipread,lOO)dtgl,dtml

read(ipread,*)

read(ipread,lO1)lminj,lmdis,dtil,flowf,smdm

close(unit=ipread)

C

if(ipid.eq.l)then

write(6,102)wf,elhi,rhol,cpl

write(6,103)tboil,conl,tdrop,ugc

write(6,104)dtgl,dtml

write(6,105)iminj,lmdis,dtil,flowf,smdm
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endif
C

C m_m

C

fphi=16. O.at an (1. O)

afphi=fphi/(180.0*4. O)

C

C

c --- redefine some parameters

c

cyfs=elhi*wf/ugc

cpli=cpl

coni=conl

C

c

C

C _D_

c Initialize parameters of relevance in solving the partial

c differential equation (pde) associated with the internal

c droplet temperature distribution.

901

C

tonc=17.0*conil(cpli*rhol)

nde=13

ndem=nde-i

ndel=nde+2

ndm=ndel-I

ndell=ndel+l

nde2=ndell+l

dls=l.O/float(ndel-l)

do 901 i=l,ndel

stm(i)=float(i-l)*dls

continue

dlsq=l.O/(dls*dls)

dls=l.O/dls

C

C

c nr = number of particles assigned to a given processor.

c nr_total = total number particles in the spray computations.
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C

nr=O

nr_total=O

C

C

C

C

c begin initialization for main fuel injection.

C

if (imin]) then

c

c nmih = number of holes in the main fuel injector.

c nmis = number of streams per hole.

c nmip = number of droplet groups in a given stream.

c nos = total number of groups in a polydisperse

c spray representing the main fuel injection.

nmih=l

umis=l

umip=lO

no s=umih*nmis*nmip

c

c There are two ways to initialize the droplet sizes, st(i),

c and droplet mass flow rates, fld(i), of a polydisperse

c spray.

C

c (i) simply input the corresponding values.

c (2) Compute from a droplet size distribution function.

c

if(.not.lmdis) then

C

c fld(i) = mass flow rate of ith droplet group, kgm/s

C

fld(1)= 0.7618374184E-05

fld(2)= 0 3031237247E-04

fld(3)= 0 4020065171E-04

fld(4)= 0 3439536158E-04

fld(5)= 0 2397707249E-04

fld(6)= 0 3062891119E-04

fld(Z)= 0 3528971865E-04

fld(8)= O.I7661ZZ411E-04
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C

c

C

fld(9)= 0.2589013457E-04

fld(lO)=O.7142747199E-04

sr(i) = droplet size of the ith droplet group.

sr(1)= 0.4308124971E-05

sr(2)= 0.9601875718E-05

st(3)= 0.1489562419E-04

sr(4)= 0.2019000021E-04

sr(5)= 0.2548375051E-04

sr(6)= 0.3254249896E-04

st(7)= 0.4136625284E-04

sr(8)= 0.5018937372E-04

sr(9)= 0.6077750004E-04

sr(lO)= 0.7665937301E-04

flowf = total mass flow rate of main fuel injection.

flowf =fld(1)+fld(2)+fld(S)+fld(4)+fld(5)+

> fld(6)+fld(Z)+fld(8)+fld(9)+fld(lO)

flowinj = total injected fuel mass per hole per stream.

flowinj=flowf*dtil/float(nmih*nmis)

if(ipid.eq.l)then

write(6,_)'flowf= ',flowf,' flowinj=

write(l,_)'flowf= ',flowf,' flowinj=

endif

',flowinj

',flowinj

C

C

c

convert fld(i) into mass.

fld(1)= dtil*fld(1)

fld(2)= dtil.fld(2)

fld(3)= dtil*fld(3)

fld(4)= dtil*fld(4)

fld(5) = dtil*fld(S)

fld(6)= dtil*fld(6)

fld(7)= dtil*fld(7)

fld(8)= dtil*fld(8)

fld(9) = dtil*fld(9)
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C

C

c

C

c

fld(lO)= dtil*fld(lO)

else

flowinj = total injected fuel mass per hole per stream.

flowinj=flowf*dtil/float(nmih_nmis)

call dropdis(rhol,flowinj,sr,fld,smdm,nmip)

endif

determine droplet number, n_i, of ith group.

andrrl=3.

andrr2=3.

andrr3=3.

andrr4=3.

andrr5=3.

andrr6=3.

andrr7=3

andrr8=3

O*fld(1)/(fphi*rhol*(sr(1)**3))

O*fld(2)/(fphi*rhol*(sr(2)**3))

O*fld(S)/(fphi_rhol_(sr(3)_3))

O_fld(4)/(fphi_rhol_(sr(4)_3))

O_fld(5)/(fphi_rhol_(sr(5)_3))

O_fld(6)/(fphi_rhol_(sr(6)*_3))

.O_fld(Z)/(fphi_rhol_(sr(7)*_3))

.O*fld(8)/(fphi_rhol_(sr(8)*_3))

andrr9=3.0*fld(9)/(fphi*rhol*(sr(9)**3))

andrrlO=3.0*fld(lO)/(fphi*rhol*(sr(lO)**3))

store droplet sizes and droplet numbers in an array form

for later use.

do 133 izl=l,nmih

do 133 iz2=l,umis

rdrop(izl,iz2,1)=sr(1)

rdrop(izl,

rdrop(izl,

rdrop(izl,

rdrop(izl,

rdrop(izl,

rdrop(izl,

rdrop(izl,

rdrop(izl,

rdrop(izl

iz2,2)=sr(2)

iz2,3)=sr(3)

iz2,4)=sr(4)

iz2,5)=sr(5)

iz2,6)=sr(6)

iz2,7)=sr(7)

iz2,8)=sr(8)

iz2,9)=sr(9)

,iz2,10)=sr(lO)

ndrrte(izl,iz2,1)=andrrl
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133
c

ndrrte(izl,

ndrrte(izl,

ndrrte(izl,

ndrrte(izl,

ndrrte(izl,

ndrrte(izl,

ndrrte(izl,

ndrrte(izl,

ndrrte(izl,

continue

iz2,2)=andrr2

iz2,3)=andrr3

iz2,4)=amdrr4

iz2,5)=andrr5

iz2,6)=andrr6

iz2,7)=andrr7

iz2,8)=_ndrr8

iz2,9)=andrr9

iz2,10)=andrrlO

if(ipid.eq.1)then

print *,' from main, ndrr= '

print *,_ndrrl,andrr2,andrr3,andrr4,

> andrr5,andrr6,andrrT,andrr8,

> andrr9,amdrrlO

endif

C

c In the present case, the initial particle x location

c is assumed to be the same as the center location

c of the second cell of the computational domain assigned

c to processor one.

C

c compute coordinates of cell 2 on processor one.

if(ipid.eq.l)then

ijk=2

call find_cntr(ijk,xctr,yctr,zctr)

xcu= xctr

xphi(1) =xctr

do n=2,np

rc = send_data r (iul(n),xphi, I,

enddo

endif

if(ipid.ne.l) then

rc = recv_data_r (iul(1),xphi, i,

xcu =xphi(1)

endif

C

c define x component of initial particle location.

C

dxloc(l,l,1)= xcu

PACKS_DATA_I)

PACKS_DATA_l)
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dxloc(1,1,2)= xcu
dxloc(1,1,3)= xcu
dxloc(1,1,4)= xcu
dxloc(1,1,5)= xcu
dxloc(1,1,6)= xcu
dxloc(l,1,7)= xcu
dxloc(1,1,8)= xcu
dxloc(1,1,9)= xcu
dxloc(1,1,10)=xcu

C

c define y component

C

dyloc(l,l,1)=

dyloc(l,l,2)=

dyloc(1,1,3)=

dyloc(1,1,4)=

dyloc(1,1,5)=

dyloc(1,1,6)=

dyloc(1,1,7)=

dyloc(l,1,8)=

of initial particle location.

0.6093000062E-02

0.5948499776E-02

0.5214500241E-02

0.4474000074E-02

0.4054999910E-02

0.3895000089E-02

0.4139999859E-02

0.5106000230E-02

dyloc(l,l,9)= 0.4997999873E-02

dyloc(1,1,10)=O.4944500048E-02

C

c define z component

C

of initial particle location.

dzloc(i,l,1)=

dzloc(l,l,2)=

dzloc(l,l,3)=

dzloc(l,l,4)=

dzloc(l,l,5)=

dzloc(l,l.6)=

dzloc(1,1.T)=

dzloc(1,1 8)=

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

dzloc(1,1 9)= 0.0

dzloc(l, I, 10)=0.0

C

c Assign approximate computational cell and processor IDS.

c

do 132 izl=l,nmih

do 132 iz2=l,nmis

do 132 iz3=l,nmip

ieloc(izl,iz2,iz3)=3
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iploc(izl,iz2,iz3)=l
132 continue

C

c define u component of drop velocity.

c

uloc(l,l,l) = 28.15850067

uloc(1,1,2) = 25.18750000

uloc(1,1,3) = 21.06999969

uloc(1,1,4) = 17.26049995

uloc(1,1,5) = 13.75449944

uloc(1,1,6) = 12.12549973

uloc(1,1,7) = 11.65199947

uloc(1,1,8) = 14.19849968

uloc(1,1,9) = 18.00499916

uloc(1,1,10)= 3.732000113

c

c define v component of drop velocity.

C

vloc(1,1,1) = 34.446

vloc(1,1,2) = 30.130

vloc(l,l,3) = 22.646

vloc(1,1,4) = 16.191

vloc(1,1,5) = 11.856

vloc(1,1,6) = 10.621

vloc(1,1,7) = 8.212

vloc(1,1,8) = 13.201

vloc(1,1,9) = 11.249

vloc(1,1,10)= 4.845

C

c define w component of drop velocity.

c

wloc(l,l,l) = 15.246

wloc(1,1,2) = 12.511

wloc(1,1,3) = 10.227

wloc(l,l,4) = 8.206

wloc(1,1,5) = 6.760

wloc(1,1,6) = 5.251

wloc(1,1,7) = 5.830

wloc(l,l,8) = 3.972

wloc(l,l,9) = 5.255

wloc(1,1,10)= 4.203

C
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c load the above particle attributes into appropriate
c arrays based on the stratergy used for parallel
c implementaion.
c

135

C

c

C

C

C

do 135 izl=l,nmih

do 135 iz2=l,nmis

do 135 iz3=1,nmip

if(iploc(izl,iz2,iz3).eq.ipid)then

nr=nr+l

xki(nr)=dxloc(izl,iz2,iz3)

yki(nr)=dyloc(izl,iz2,iz3)_(l.35-O.70_rand())

zki(nr)=dzloc(izl,iz2,iz3)

uki(nr)=uloc(izl,iz2,iz3) _(1.25-0.50_rand())

vki(nr)=vloc(izl,iz2,iz3) _(l.25-0.50_rand())

wki(nr)=wloc(izl,iz2,iz3) *(l.30-0.60_rand())

tki(nr)=tdrop

ski(nr)=rdrop(izl,iz2,iz3)_rdrop(izl,iz2,iz3)

rki(nr)=rdrop(izl,iz2,iz3)

sklim(nr)=O.O4_rdrop(izl,iz2,iz3)_rdrop(izl,iz2,iz3)

ndrr(nr)=ndrrte(izl,iz2,iz3)

isen(nr)=ieloc(izl,iz2,iz3)

isep(nr)=iploc(izl,iz2,iz3)

ins(nr)=nr

do i3=l,ndel

vh(nr,i3)=O.O

enddo

vh(nr,ndell)=O.O

smass=fphi_rhol_(rki(nr)_S)_float(ndrr(nr))/(3.0)

vh(nr,nde2)=smass

endif

continue

nr_t ot al=nr_t ot al+nos

endif

end of main fuel injecton

C

C

C

ctl = time associated with dtgl
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tml=
tll=

time associated with dtml

time associated with dtil

tl =0.0

tml=O.O

tll = 0.0

±f(.not.lminj)tll = 1.0e+10

C ....

c read restart

C

files if Idread = .true.

if(idread) then

if(ipid.eq.l) then

open(unit=idread2,file='liquid_results_ini ')

read(idread2,*)nr_total

read(idread2,*)dtilte,dtmlte,tl,tll,tml

read(idread2,*)iseed

close(unit=idread2)

dphi(1)=dtilte

dphi(2)=dtmlte

dphi(3)=tl

dphi(4)=tll

dphi(5)=tml

Iphi(1)=nr_total

Iphi(2)=iseed

do n=2,np

ns_elm=2

irc= send_data_i

ns_elm=2*5

rc = send_data_r

enddo

endif

if(ipid.ne.1) then

ns_elm=2

irc= recv_data_i

ns_elm=2*5

rc = recv_data_r

dtilte =dphi(1)

dtmlte =dphi(2)

tl =dphi(3)

(iul(n),iphi, ns_elm,

(iul(n),dphi, ns_elm,

(iul(i),iphi,

(iul(1),dphi,

ns_elm,

ns_elm,

INTS_DATA_2)

PACKS_DATA_l)

INTS_DATA_2)

PACKS_DATA_I)
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c

tll =dphi(4)
tml =dphi(5)
nr_total=iphi(1)
iseed =iphi(2)
endif

write(I,*)' begin outputting records from restart file'
open(unit=idread,file='liquid_results',

> access='direct',recl=136,form='unformatted ' )
do ip=l,nr_total
irecord=ip
read(idread,rec=irecord) ndrr(ip),ins(ip),

i isen(ip),xki(ip),yki(ip),zki(ip),uki(ip),
2 vki(ip),wki(ip),tki(ip),rki(ip),ski(ip),sklim(ip),
3 (vh(ip,j),j=l,nde+4)

if(ip.ge.l) then
write(l,*) ip,ndrr(ip),ins(ip),

1 isen(ip),xki(ip),yki(ip),zki(ip),uki(ip),
2 vki(ip),wki(ip),tki(ip),rki(ip),ski(ip),sklim(ip),
3 (vh(ip,j),j=l,nde+4),irecord

endif
enddo
close(unit=idread)
write(l,*)' end outputting records from restart file'

nr=O
do ip=l,nr_total
ispr_el_tno=isen(ip)
isent=mod(ispr_el_tno,nodes)
if(isent.eq.O)isent=nodes
isept=(ispr_el_tno-l)/nodes + 1
if(ipid.eq.isept)then

nr=nr+l
isen(nr)=isent
isep(nr)=isept
xki(nr) =xki(ip)
yki(nr) =yki(ip)
zki(nr) =zki(ip)
ski(nr) =ski(ip)
rki(nr) =rki(ip)
sklim(nr)=sklim(ip)
uki(nr) =uki(ip)
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vki(nr) =vki(ip)
wki(nr) =wki(ip)
tki(nr) =tki(ip)
ins(nr) =ins(ip)
ndrr(nr) =ndrr(ip)

do jk=l,nde2

vh (nr, jk) =vh(ip, jk)

enddo

endif

enddo

endif

if (ipid

write(6

write(6

write (6

write(6

write(6

write(6

endif

.eq.1) then

,*)'nr= ',nr,' nr_total= ',nr_total

,*)'ndrr= ',(ndrr(ip),ip=l,nr)

_*) _nos = J,nos

,*)'tml= ',tml,' dtml= _,dtml

,*)'tl= ',tl,' dtgl= ',dtgl

,*)'tll= ',tll,' dtil= ',dtil

IO0

101

102

103

104

write(6,*)' '

write(6,*)' --- ends writing from subroutine spray_int_rerun of

Ispray solver ---'

write(6,*)' '

write(l,*)' '

write(l,*)' --- ends writing from subroutine spray_int_rerun of

Ispray solver ---'

write(l,*)' '

return

format(4el6.10)

format(212,3el6.10)

format(Ix,'wf= ',f5.1,' elhi = ',ell.5,

1J rhol= ',f4.0,' cpl = ',f8.3)

format(lx,'tboil= ',f5.1,' conl= ',ell.5,

1' tdrop= ',f5.1,' ugc= ',fll.2)

format(ix,'dtgl= ',ell.5,' dtml = ',ell.5)
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105 format(Ix,'imin3= ',12,'

1' dtil= ',e11.5,' flowf= '

end

imdis=

,ell.5,

',12,

' smdm= ',ell.5)

5]





Appendix V

An Example LSPRAY Input file

For a description of the variables used in liquid_input file, refer to Appendix

IV.

wf,elhi,rhol,cpl

O.IO02000000E+O30.3644438200E+O60.6880000000E+O30.2249275500E+04

tboil,conl,tdrop,ugc

0.3715000000E+O31.O333450000E-OIO.3140000000E+O30.8314900000E+04

dtgl,dtml

O.1500000000E-O20.7500000000E-05

iminj,lmdis,dtil,flowf,smdm

T FO.1500000000E-O20.SI74018348E-O30.1200000000E-03
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Appendix VI

A Subroutine Listing for LSPRAY and EUPDF Data Output

C

C

subroutine spray_pdf_output

include 'cfsparms.i'

include 'cfsdt.i'

include _cfspert.i'

include 'cfsconv.i'

include 'cfstime.i'

include 'cfsmimd.i'

include 'cfsarea.i'

include 'cfsnodes.i'

include 'cfsvars.i'

include 'cfsprop.i'

include 'cfsh.i'

C

c Include common blocks associated with spray and PDF computations.

c

include 'dcfslog.i'

include 'dcfslog_rw.i'

C

c Include common blocks associated with PDF computations.

C

include 'p3dpar.i'

include 'p3dcom.i'

include 'p3dave.i'

include 'p3dpro.i'

C

c Include common blocks associated with spray computations.

C

include 'd3dpar.i'

include 'd3dcom.i'

include 'd3din].i'

include 'd3dprl.i'

C

C

C
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c PURPOSE:This routine writes output data from PDF & spray

c computations on a separate restart and standard

c output files.

C

c FORM OF CALL: call spray_pdf_output

C

c

c ADDITIONAL I/O:

C

C

C

C

C

C

C

C

C

C

INPUTS: None.

OUTPUTS:

liquid_results_new

liquid_results_ini

spray_pdf_parameter_input

C ------

c

c Write spray restart files.

>

>

if(ispray) then

open(unit=idwrit,file='liquid_results_new ',

access='direct',recl=138,

form='unformatted')

if(ipid.eq.l) then

open(unit=idwrit2,file='liquid_results_ini')

write(idwrit2,_)nr_total

call flush(idwrit2)

write(idwrit2,_)dtil,dtml,tl,tll,tml

call flush(idwrit2)

write(idwrit2,_)iseed

call flush(idwrit2)

close(unit=idwrit2)

endif

INTS_DATA_2=314

do n=l,np

no_to_ip(n)=nr
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c

enddo

do n=l,np

if(ipid.ne.n) then

irc= send_data_i (iul(n),no_to_ip(n),

endif

enddo

do n=l,np

if(ipid.ne.n) then

irc= recv_data_i (iul(n),no_fr_ip(n),

endif

enddo

no_fr_ip(ipid)=no_to_ip(ipid)

irecordd=O

do n=l,ipid-1

irecordd=irecordd+no_fr_ip(n)

enddo

i, INTS_DATA_2)

I, INTS_DATA_2)

do ip=l,nr

irecord=irecordd+ip

isent=isen(ip)+(isep(ip)-l)*nodes

write(idwrit,rec=irecord) ndrr(ip),ins(ip),

1 isent,xki(ip),yki(ip),zki(ip),uki(ip),

2 vki(ip),wki(ip),tki(ip),rki(ip),ski(ip),sklim(ip),

3 (vh(ip,j),j=l,nde+4)

call flush(idwrit)

if(ip.ge.l) then

write(l_*) irecord,ndrr(ip),ins(ip),

I isent,xki(ip),yki(ip),zki(ip),uki(ip),

2 vki(ip),wki(ip),tki(ip),rki(ip),ski(ip),sklim(ip),

3 (vh(ip,j),]=l,nde+4),nr,nr_total,irecord

endif

enddo

close(unit=idwrit)

endif

Update file: spray_pdf_parameter_input.

Also, write PDF restart files.
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C

C

if(ipdf.eq.l) then

if(ipid.eq.l) then

open(unit=85,file='spray_pdf_parameter_input')

wrlte(85,_)'ispray Idread ispray_mod'

wrlte(85,_)ispray,ldread,ispray_mod

wrlte(85,_)'ipread idread idwrit idread2 idwrit2'

write(85,_)ipread,idread,idwrit,idread2,idwrit2

write(85,_)'ipdf ns ipdf_mod ipdf_num'

wrlte(85,_)ipdf,ns,ipdf_mod,ipdf_num

write(85,$)'ireal irea2 iwril iwri2'

wrlte(85,_)ireal,irea2,iwril,iwri2

close(unit=85)

endif

call outpdf2(ns)

endif

C

C

C

C

C

C

C

Write output of spray computations either to unit

one or to the screen.

if(Ispray) call prnspr

return

END
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Appendix VII

A Listing of Geometric Variables Used in LSPRAY and EUPDF

c

c The spray module expects the following inputs on

c the grid related information:

c

c nodes = total number of the computational elements.

c hedge = total number of faces in the computational domain.

c nfaces(i) = total number of faces of the element, i.

c

c edge(i,l) and edge(i,2) represent the adjacent elements of

c the face, i, if the face happens to be an interface between two

c elements. Otherwise edge(i,l) represents the correponding

c boundary condition identifier if the face happens to

c represent a computational boundary condition.

c

c face_to_edge(i,j) represents the face ID of the element, i,

c and the face, j.

c

c cl(i,]) provides connectivity map. cl(i,j) = adjacent element

c ID of the element, i, and the face, j, otherwise

c cl(i,j) = boundary condition identifier on any boudary.

c

c vol(i) = volume of the element, i.

c

c areax(i), areay(i), and areaz(i) are the cartesian components

c of the outward pointing area vector of the face, i.

c

c xl(i), yl(i), zl(i) are the cartesian components of the node

c one of the element, i. Similarly, x2(i), y2(i), z2(i)

c are for node 2 and so on.

c

c triangle(i) is .true. if i is a triangular element. Similarly,

c quadrilateral(i), tetrahedron(i), and wedge(i) are logical

c varibles representing other type of elements.

c

c axisymmetric is set to .true. for axisymmetric computations

c otherwise it is .false. The axisymmetric computations are

59



c performed by generating 3D elements from a 2D mesh with

c an arc centered around the z coordinate, z=0.0. The angle of

c the arc is defined by the variables, ARC, in radians and THETA0,

c in degrees.

C

c

C
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Appendix VIII

An Example of the Partial Listings of Code Initiation for

Coupling LSPRAY and EUPDF With a Gas Flow Solver

1. The following segment shows how include calls to

spray_int_rerun gz pdf_int_rerun.

C

C

C

c Include common blocks associated with spray and PDF computations.

c

include 'dcfslog.i'

include 'dcfslog_r_.i'

C

C

c Initialize Monte Carlo PDF computations.

C

if(ipdf.eq.1) then

call pdf_int_rerun

endif

c

c Initialize spray computations.

C

IF(ispray) then

call spray_int_rerun
endif

C

c

II. The following segment shows how to include calls to DCLR &

PDF.

C

c Include common blocks associated with spray and PDF computations.

C

include 'dcfslog.i'

c

double precision tbiggas, tendgas, totaltgas
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c

C o----

c

c

c Call dclr in order to advance the spray computations

c over a time step of dtgl.

c

if(ispray.and.mod(iteration,ispray_mod).eq.O) then

call dclr

endif

c

c

c

c

c

c

c Call pdf in order to advance the PDF computations

c over the next time step.

c

if(ipdf.eq.l.and.mod(iteration,ipdf_mod).eq.O) then

do i=l,ipdf_num

call pdf

enddo

endif

c

III. The following segment shows how to include the interphase

contributions to the gas phase governing equations.

c

C ------

c

c Include common blocks associated with spray and PDF computations.

c

c

c

c

include 'dcfslog.i'

Include common blocks associated with spray the solver.
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c

c

include 'd3dqat.i'

c

c

c

c Include liquid-phase contributions to mass, momentum, species,

c and energy equations.

c

if (ispray) then

do i=l,nodes

sourcem(i)=sourcem(i)+smlc(i)

sourceu(i)=sourceu(i)+smlmx(i)

sourcev(i)=sourcev(i)+smlmy(i)

sourcew(i)=sourcew(i)+smlmz(i)

sourcef(i)=sourcef(i)+smlc(i)

sourceh(i)=sourceh(i)+smle(i)

enddo

endif
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Appendix IX

An Example Summary of CPU Times Taken By CORSAIR and

LSPRAY

Table 2 summarizes the cpu times per cycle taken by CORSAIR and

LSPRAY versus the number of processors used on the NASA LeRC LACE

cluster. These computations refer to the case of a confined swirl-stabilized

spray flame as reported in Ref. 9. The computations were performed on a

grid of 2486 quadrilateral elements. It takes approximately about 1000 to

2000 cycles for the computations to reach a converged solution. These re-

suits should be considered as preliminary because, as reported in Ref. 9, the

parallel performance of the spray computations was found to be reasonable

on massively parallel computers like Cray T3D but poor on workstation clus-

ters like LACE. In ref. 9, the results obtained from different decomposition

strategies were also summarized. We are in the process of exploring ways to

improve upon the parallel performance of LSPRAY in a workstation-cluster

environment.

Table 2. Cpu time (sec) per cycle versus number of PEs on LACE Cluster.

Solver Characteristic

CORSAIR 5 steps/cycle

LSPRAY 100 steps/cycle

Number of processors

2 4 8 16

3.55 1.90 1.10 0.60

0.72 1.00 2.00 6.00
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